61 research outputs found

    Predicting B Cell Receptor Substitution Profiles Using Public Repertoire Data

    Full text link
    B cells develop high affinity receptors during the course of affinity maturation, a cyclic process of mutation and selection. At the end of affinity maturation, a number of cells sharing the same ancestor (i.e. in the same "clonal family") are released from the germinal center, their amino acid frequency profile reflects the allowed and disallowed substitutions at each position. These clonal-family-specific frequency profiles, called "substitution profiles", are useful for studying the course of affinity maturation as well as for antibody engineering purposes. However, most often only a single sequence is recovered from each clonal family in a sequencing experiment, making it impossible to construct a clonal-family-specific substitution profile. Given the public release of many high-quality large B cell receptor datasets, one may ask whether it is possible to use such data in a prediction model for clonal-family-specific substitution profiles. In this paper, we present the method "Substitution Profiles Using Related Families" (SPURF), a penalized tensor regression framework that integrates information from a rich assemblage of datasets to predict the clonal-family-specific substitution profile for any single input sequence. Using this framework, we show that substitution profiles from similar clonal families can be leveraged together with simulated substitution profiles and germline gene sequence information to improve prediction. We fit this model on a large public dataset and validate the robustness of our approach on an external dataset. Furthermore, we provide a command-line tool in an open-source software package (https://github.com/krdav/SPURF) implementing these ideas and providing easy prediction using our pre-fit models.Comment: 23 page

    Benchmarking Tree and Ancestral Sequence Inference for B Cell Receptor Sequences

    Get PDF
    B cell receptor sequences evolve during affinity maturation according to a Darwinian process of mutation and selection. Phylogenetic tools are used extensively to reconstruct ancestral sequences and phylogenetic trees from affinity-matured sequences. In addition to using general-purpose phylogenetic methods, researchers have developed new tools to accommodate the special features of B cell sequence evolution. However, the performance of classical phylogenetic techniques in the presence of B cell-specific features is not well understood, nor how much the newer generation of B cell specific tools represent an improvement over classical methods. In this paper we benchmark the performance of classical phylogenetic and new B cell-specific tools when applied to B cell receptor sequences simulated from a forward-time model of B cell receptor affinity maturation toward a mature receptor. We show that the currently used tools vary substantially in terms of tree structure and ancestral sequence inference accuracy. Furthermore, we show that there are still large performance gains to be achieved by modeling the special mutation process of B cell receptors. These conclusions are further strengthened with real data using the rules of isotype switching to count possible violations within each inferred phylogeny

    Characterization of the meningococcal DNA glycosylase Fpg involved in base excision repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neisseria meningitidis</it>, the causative agent of meningococcal disease, is exposed to high levels of reactive oxygen species inside its exclusive human host. The DNA glycosylase Fpg of the base excision repair pathway (BER) is a central player in the correction of oxidative DNA damage. This study aimed at characterizing the meningococcal Fpg and its role in DNA repair.</p> <p>Results</p> <p>The deduced <it>N. meningitidis </it>Fpg amino acid sequence was highly homologous to other Fpg orthologues, with particularly high conservation of functional domains. As for most <it>N. meningitidis </it>DNA repair genes, the <it>fpg </it>gene contained a DNA uptake sequence mediating efficient transformation of DNA. The recombinant <it>N. meningitidis </it>Fpg protein was over-expressed, purified to homogeneity and assessed for enzymatic activity. <it>N. meningitidis </it>Fpg was found to remove 2,6-diamino-4-hydroxy-5-formamidopyrimidine (faPy) lesions and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8oxoG) opposite of C, T and G and to a lesser extent opposite of A. Moreover, the <it>N. meningitidis fpg </it>single mutant was only slightly affected in terms of an increase in the frequency of phase variation as compared to a mismatch repair mutant.</p> <p>Conclusion</p> <p>Collectively, these findings show that meningococcal Fpg functions are similar to those of prototype Fpg orthologues in other bacterial species.</p

    BioReader: a text mining tool for performing classification of biomedical literature

    Get PDF
    Abstract Background Scientific data and research results are being published at an unprecedented rate. Many database curators and researchers utilize data and information from the primary literature to populate databases, form hypotheses, or as the basis for analyses or validation of results. These efforts largely rely on manual literature surveys for collection of these data, and while querying the vast amounts of literature using keywords is enabled by repositories such as PubMed, filtering relevant articles from such query results can be a non-trivial and highly time consuming task. Results We here present a tool that enables users to perform classification of scientific literature by text mining-based classification of article abstracts. BioReader (Biomedical Research Article Distiller) is trained by uploading article corpora for two training categories - e.g. one positive and one negative for content of interest - as well as one corpus of abstracts to be classified and/or a search string to query PubMed for articles. The corpora are submitted as lists of PubMed IDs and the abstracts are automatically downloaded from PubMed, preprocessed, and the unclassified corpus is classified using the best performing classification algorithm out of ten implemented algorithms. Conclusion BioReader supports data and information collection by implementing text mining-based classification of primary biomedical literature in a web interface, thus enabling curators and researchers to take advantage of the vast amounts of data and information in the published literature. BioReader outperforms existing tools with similar functionalities and expands the features used for mining literature in database curation efforts. The tool is freely available as a web service at http://www.cbs.dtu.dk/services/BioReade

    Antibody Cross-Reactivity in Antivenom Research

    Get PDF
    Antivenom cross-reactivity has been investigated for decades to determine which antivenoms can be used to treat snakebite envenomings from different snake species. Traditionally, the methods used for analyzing cross-reactivity have been immunodiffusion, immunoblotting, enzyme-linked immunosorbent assay (ELISA), enzymatic assays, and in vivo neutralization studies. In recent years, new methods for determination of cross-reactivity have emerged, including surface plasmon resonance, antivenomics, and high-density peptide microarray technology. Antivenomics involves a top-down assessment of the toxin-binding capacities of antivenoms, whereas high-density peptide microarray technology may be harnessed to provide in-depth knowledge on which toxin epitopes are recognized by antivenoms. This review provides an overview of both the classical and new methods used to investigate antivenom cross-reactivity, the advantages and disadvantages of each method, and examples of studies using the methods. A special focus is given to antivenomics and high-density peptide microarray technology as these high-throughput methods have recently been introduced in this field and may enable more detailed assessments of antivenom cross-reactivity

    Interpretation of Binary Pulsar Observations

    Get PDF
    The nature, dynamics and evolution of the three known radio pulsar binaries are discussed. The system containing 1913+16 appears to comprise two ~1.4 M⊙ components, and to undergo orbital decay as predicted by general relativity. It is proposed that 1913+16 has a neutron star companion and that 0655+64 and 0820+02 have white dwarf companions which should be observable optically

    Tools and data services registry: a community effort to document bioinformatics resources

    Get PDF
    Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand. Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners. As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools
    • 

    corecore